Product Docs
  • What is Dataworkz?
  • Getting Started
    • What You Will Need (Prerequisites)
    • Create with Default Settings: RAG Quickstart
    • Custom Settings: RAG Quickstart
    • Data Transformation Quickstart
    • Create an Agent: Quickstart
  • Concepts
    • RAG Applications
      • Overview
      • Ingestion
      • Embedding Models
      • Vectorization
      • Retrieve
    • AI Agents
      • Introduction
      • Overview
      • Tools
        • Implementation
      • Type
      • Tools Repository
      • Tool Execution Framework
      • Agents
      • Scenarios
      • Agent Builder
    • Data Studio
      • No-code Transformations
      • Datasets
      • Dataflows
        • Single Dataflows:
        • Composite dataflows:
        • Benefits of Dataflows:
      • Discovery
        • How to: Discovery
      • Lineage
        • Features of Lineage:
        • Viewing a dataset's lineage:
      • Catalog
      • Monitoring
      • Statistics
  • Guides
    • RAG Applications
      • Configure LLM's
        • AWS Bedrock
      • Embedding Models
        • Privately Hosted Embedding Models
        • Amazon Bedrock Hosted Embedding Model
        • OpenAI Embedding Model
      • Connecting Your Data
        • Finding Your Data Storage: Collections
      • Unstructured Data Ingestion
        • Ingesting Unstructured Data
        • Unstructured File Ingestion
        • Html/Sharepoint Ingestion
      • Create Vector Embeddings
        • How to Build the Vector embeddings from Scratch
        • How do Modify Existing Chunking/Embedding Dataflows
      • Response History
      • Creating RAG Experiments with Dataworkz
      • Advanced RAG - Access Control for your data corpus
    • AI Agents
      • Concepts
      • Tools
        • Dataset
        • AI App
        • Rest API
        • LLM Tool
        • Relational DB
        • MongoDB
        • Snowflake
      • Agent Builder
      • Agents
      • Guidelines
    • Data Studio
      • Transformation Functions
        • Column Transformations
          • String Operations
            • Format Operations
            • String Calculation Operations
            • Remove Stop Words Operation
            • Fuzzy Match Operation
            • Masking Operations
            • 1-way Hash Operation
            • Copy Operation
            • Unnest Operation
            • Convert Operation
            • Vlookup Operation
          • Numeric Operations
            • Tiles Operation
            • Numeric Calculation Operations
            • Custom Calculation Operation
            • Numeric Encode Operation
            • Mask Operation
            • 1-way Hash Operation
            • Copy Operation
            • Convert Operation
            • VLookup Operation
          • Boolean Operations
            • Mask Operation
            • 1-way Hash Operation
            • Copy Operation
          • Date Operations
            • Date Format Operations
            • Date Calculation Operations
            • Mask Operation
            • 1-way Hash Operation
            • Copy Operation
            • Encode Operation
            • Convert Operation
          • Datetime/Timestamp Operations
            • Datetime Format Operations
            • Datetime Calculation Operations
            • Mask Operation
            • 1-way Hash Operation
            • Copy Operation
            • Encode Operation
            • Page 1
        • Dataset Transformations
          • Utility Functions
            • Area Under the Curve
            • Page Rank Utility Function
            • Transpose Utility Function
            • Semantic Search Template Utility Function
            • New Header Utility Function
            • Transform to JSON Utility Function
            • Text Utility Function
            • UI Utility Function
          • Window Functions
          • Case Statement
            • Editor Query
            • UI Query
          • Filter
            • Editor Query
            • UI Query
      • Data Prep
        • Joins
          • Configuring a Join
        • Union
          • Configuring a Union
      • Working with CSV files
      • Job Monitoring
    • Utility Features
      • IP safelist
      • Connect to data source(s)
        • Cloud Data Platforms
          • AWS S3
          • BigQuery
          • Google Cloud Storage
          • Azure
          • Snowflake
          • Redshift
          • Databricks
        • Databases
          • MySQL
          • Microsoft SQL Server
          • Oracle
          • MariaDB
          • Postgres
          • DB2
          • MongoDB
          • Couchbase
          • Aerospike
          • Pinecone
        • SaaS Applications
          • Google Ads
          • Google Analytics
          • Marketo
          • Zoom
          • JIRA
          • Salesforce
          • Zendesk
          • Hubspot
          • Outreach
          • Fullstory
          • Pendo
          • Box
          • Google Sheets
          • Slack
          • OneDrive / Sharepoint
          • ServiceNow
          • Stripe
      • Authentication
      • User Management
    • How To
      • Data Lake to Salesforce
      • Embed RAG into your App
  • API
    • Generate API Key in Dataworkz
    • RAG Apps API
    • Agents API
  • Open Source License Types
Powered by GitBook
On this page
  1. Guides
  2. Data Studio
  3. Data Prep
  4. Union

Configuring a Union

This page demonstrates the steps needed to create a union

PreviousUnionNextWorking with CSV files

Last updated 1 month ago

Union operation can be performed by following the steps below.

Click Data Prep from the top menu

Select the type of Data Preparation that is intended (Union in this example)

Union operator would show on the canvas.

Now select the dataset from the left panel, drag and drop it to the canvas on the right. Repeat this step for the 2nd dataset.

Both datasets would show on the canvas along with the Union operator

Now connect the 2 datasets with the Union node.

Click the edge connecting any one of the datasets with Union node, then the screen below would pop-up. Records can be selected either based on the date range or the time interval. Also desired columns in the result set can be selected on this screen

Repeat the above step for the edge connecting 2nd dataset with the Union node.

Click the Union node. Panel at the bottom would show up with a superset of the columns from both the datasets. When any one of the datasets has a column that is missing in the other one, an entry in the action column called "Add missing data" would show up. This action is optional. In default mode rows from the dataset lacking this column would result in null values for the same.

Alternatively by clicking "Add missing data" a window would pop-up. It allows adding a value to the field

Click Save button on the top right of the canvas. This would prompt for output parameters that determine target dataset to which result set of the join is written.

  • Select the workspace and collection

  • Select either an existing dataset in the collection or create a new by right click

  • Select the directory format (Parquet/CSV)

  • Select the transfer mode (where applicable)

    • append

    • upsert

    • truncate and insert

    • drop & create

  • Click Next

  • Select name for the job that is being executed

  • Job can be executed either one-time or be schedule as recurring one that runs at the specified frequency.

  • Click Submit to execute the job

Submitted job can be monitored on the screen

Job Monitoring