Product Docs
  • What is Dataworkz?
  • Getting Started
    • What You Will Need (Prerequisites)
    • Create with Default Settings: RAG Quickstart
    • Custom Settings: RAG Quickstart
    • Data Transformation Quickstart
    • Create an Agent: Quickstart
  • Concepts
    • RAG Applications
      • Overview
      • Ingestion
      • Embedding Models
      • Vectorization
      • Retrieve
    • AI Agents
      • Introduction
      • Overview
      • Tools
        • Implementation
      • Type
      • Tools Repository
      • Tool Execution Framework
      • Agents
      • Scenarios
      • Agent Builder
    • Data Studio
      • No-code Transformations
      • Datasets
      • Dataflows
        • Single Dataflows:
        • Composite dataflows:
        • Benefits of Dataflows:
      • Discovery
        • How to: Discovery
      • Lineage
        • Features of Lineage:
        • Viewing a dataset's lineage:
      • Catalog
      • Monitoring
      • Statistics
  • Guides
    • RAG Applications
      • Configure LLM's
        • AWS Bedrock
      • Embedding Models
        • Privately Hosted Embedding Models
        • Amazon Bedrock Hosted Embedding Model
        • OpenAI Embedding Model
      • Connecting Your Data
        • Finding Your Data Storage: Collections
      • Unstructured Data Ingestion
        • Ingesting Unstructured Data
        • Unstructured File Ingestion
        • Html/Sharepoint Ingestion
      • Create Vector Embeddings
        • How to Build the Vector embeddings from Scratch
        • How do Modify Existing Chunking/Embedding Dataflows
      • Response History
      • Creating RAG Experiments with Dataworkz
      • Advanced RAG - Access Control for your data corpus
    • AI Agents
      • Concepts
      • Tools
        • Dataset
        • AI App
        • Rest API
        • LLM Tool
        • Relational DB
        • MongoDB
        • Snowflake
      • Agent Builder
      • Agents
      • Guidelines
    • Data Studio
      • Transformation Functions
        • Column Transformations
          • String Operations
            • Format Operations
            • String Calculation Operations
            • Remove Stop Words Operation
            • Fuzzy Match Operation
            • Masking Operations
            • 1-way Hash Operation
            • Copy Operation
            • Unnest Operation
            • Convert Operation
            • Vlookup Operation
          • Numeric Operations
            • Tiles Operation
            • Numeric Calculation Operations
            • Custom Calculation Operation
            • Numeric Encode Operation
            • Mask Operation
            • 1-way Hash Operation
            • Copy Operation
            • Convert Operation
            • VLookup Operation
          • Boolean Operations
            • Mask Operation
            • 1-way Hash Operation
            • Copy Operation
          • Date Operations
            • Date Format Operations
            • Date Calculation Operations
            • Mask Operation
            • 1-way Hash Operation
            • Copy Operation
            • Encode Operation
            • Convert Operation
          • Datetime/Timestamp Operations
            • Datetime Format Operations
            • Datetime Calculation Operations
            • Mask Operation
            • 1-way Hash Operation
            • Copy Operation
            • Encode Operation
            • Page 1
        • Dataset Transformations
          • Utility Functions
            • Area Under the Curve
            • Page Rank Utility Function
            • Transpose Utility Function
            • Semantic Search Template Utility Function
            • New Header Utility Function
            • Transform to JSON Utility Function
            • Text Utility Function
            • UI Utility Function
          • Window Functions
          • Case Statement
            • Editor Query
            • UI Query
          • Filter
            • Editor Query
            • UI Query
      • Data Prep
        • Joins
          • Configuring a Join
        • Union
          • Configuring a Union
      • Working with CSV files
      • Job Monitoring
    • Utility Features
      • IP safelist
      • Connect to data source(s)
        • Cloud Data Platforms
          • AWS S3
          • BigQuery
          • Google Cloud Storage
          • Azure
          • Snowflake
          • Redshift
          • Databricks
        • Databases
          • MySQL
          • Microsoft SQL Server
          • Oracle
          • MariaDB
          • Postgres
          • DB2
          • MongoDB
          • Couchbase
          • Aerospike
          • Pinecone
        • SaaS Applications
          • Google Ads
          • Google Analytics
          • Marketo
          • Zoom
          • JIRA
          • Salesforce
          • Zendesk
          • Hubspot
          • Outreach
          • Fullstory
          • Pendo
          • Box
          • Google Sheets
          • Slack
          • OneDrive / Sharepoint
          • ServiceNow
          • Stripe
      • Authentication
      • User Management
    • How To
      • Data Lake to Salesforce
      • Embed RAG into your App
  • API
    • Generate API Key in Dataworkz
    • RAG Apps API
    • Agents API
  • Open Source License Types
Powered by GitBook
On this page
  1. Guides
  2. Data Studio
  3. Transformation Functions
  4. Dataset Transformations
  5. Utility Functions

Transpose Utility Function

PreviousPage Rank Utility FunctionNextSemantic Search Template Utility Function

Last updated 1 year ago

Transpose

Transpose functions converts columns to rows against the selected key. It requires selecting.

  • Key Column - this remains constant in the result set and repeats per data column type

  • Data Columns - columns that need to be transposed as rows

  • Column for transposed Data field - name of the column that would contain the pre-transpose data column names

  • Column for transposed Data field value - name of the column that would contain the pre-transpose data column’s values

For example consider the below dataset

ID

City

State

1

San Jose

California

2

San Diego

California

3

Detroit

Michigan

Applying transpose function to the above dataset with Key as ID, Data Column as City & State, Column for transposed data field as ‘New_Field’ & Column for transposed Data field value as ‘Field_Value’ would result in the following dataset

ID

New_Field

Field_Value

1

City

San Jose

1

State

California

2

City

San Diego

2

State

California

3

City

Detroit

3

State

Michigan