Product Docs
  • What is Dataworkz?
  • Getting Started
    • What You Will Need (Prerequisites)
    • Create with Default Settings: RAG Quickstart
    • Custom Settings: RAG Quickstart
    • Data Transformation Quickstart
    • Create an Agent: Quickstart
  • Concepts
    • RAG Applications
      • Overview
      • Ingestion
      • Embedding Models
      • Vectorization
      • Retrieve
    • AI Agents
      • Introduction
      • Overview
      • Tools
        • Implementation
      • Type
      • Tools Repository
      • Tool Execution Framework
      • Agents
      • Scenarios
      • Agent Builder
    • Data Studio
      • No-code Transformations
      • Datasets
      • Dataflows
        • Single Dataflows:
        • Composite dataflows:
        • Benefits of Dataflows:
      • Discovery
        • How to: Discovery
      • Lineage
        • Features of Lineage:
        • Viewing a dataset's lineage:
      • Catalog
      • Monitoring
      • Statistics
  • Guides
    • RAG Applications
      • Configure LLM's
        • AWS Bedrock
      • Embedding Models
        • Privately Hosted Embedding Models
        • Amazon Bedrock Hosted Embedding Model
        • OpenAI Embedding Model
      • Connecting Your Data
        • Finding Your Data Storage: Collections
      • Unstructured Data Ingestion
        • Ingesting Unstructured Data
        • Unstructured File Ingestion
        • Html/Sharepoint Ingestion
      • Create Vector Embeddings
        • How to Build the Vector embeddings from Scratch
        • How do Modify Existing Chunking/Embedding Dataflows
      • Response History
      • Creating RAG Experiments with Dataworkz
      • Advanced RAG - Access Control for your data corpus
    • AI Agents
      • Concepts
      • Tools
        • Dataset
        • AI App
        • Rest API
        • LLM Tool
        • Relational DB
        • MongoDB
        • Snowflake
      • Agent Builder
      • Agents
      • Guidelines
    • Data Studio
      • Transformation Functions
        • Column Transformations
          • String Operations
            • Format Operations
            • String Calculation Operations
            • Remove Stop Words Operation
            • Fuzzy Match Operation
            • Masking Operations
            • 1-way Hash Operation
            • Copy Operation
            • Unnest Operation
            • Convert Operation
            • Vlookup Operation
          • Numeric Operations
            • Tiles Operation
            • Numeric Calculation Operations
            • Custom Calculation Operation
            • Numeric Encode Operation
            • Mask Operation
            • 1-way Hash Operation
            • Copy Operation
            • Convert Operation
            • VLookup Operation
          • Boolean Operations
            • Mask Operation
            • 1-way Hash Operation
            • Copy Operation
          • Date Operations
            • Date Format Operations
            • Date Calculation Operations
            • Mask Operation
            • 1-way Hash Operation
            • Copy Operation
            • Encode Operation
            • Convert Operation
          • Datetime/Timestamp Operations
            • Datetime Format Operations
            • Datetime Calculation Operations
            • Mask Operation
            • 1-way Hash Operation
            • Copy Operation
            • Encode Operation
            • Page 1
        • Dataset Transformations
          • Utility Functions
            • Area Under the Curve
            • Page Rank Utility Function
            • Transpose Utility Function
            • Semantic Search Template Utility Function
            • New Header Utility Function
            • Transform to JSON Utility Function
            • Text Utility Function
            • UI Utility Function
          • Window Functions
          • Case Statement
            • Editor Query
            • UI Query
          • Filter
            • Editor Query
            • UI Query
      • Data Prep
        • Joins
          • Configuring a Join
        • Union
          • Configuring a Union
      • Working with CSV files
      • Job Monitoring
    • Utility Features
      • IP safelist
      • Connect to data source(s)
        • Cloud Data Platforms
          • AWS S3
          • BigQuery
          • Google Cloud Storage
          • Azure
          • Snowflake
          • Redshift
          • Databricks
        • Databases
          • MySQL
          • Microsoft SQL Server
          • Oracle
          • MariaDB
          • Postgres
          • DB2
          • MongoDB
          • Couchbase
          • Aerospike
          • Pinecone
        • SaaS Applications
          • Google Ads
          • Google Analytics
          • Marketo
          • Zoom
          • JIRA
          • Salesforce
          • Zendesk
          • Hubspot
          • Outreach
          • Fullstory
          • Pendo
          • Box
          • Google Sheets
          • Slack
          • OneDrive / Sharepoint
          • ServiceNow
          • Stripe
      • Authentication
      • User Management
    • How To
      • Data Lake to Salesforce
      • Embed RAG into your App
  • API
    • Generate API Key in Dataworkz
    • RAG Apps API
    • Agents API
  • Open Source License Types
Powered by GitBook
On this page
  • Prerequisite
  • Create Connector for Marketo
  • Add Configuration
  1. Guides
  2. Utility Features
  3. Connect to data source(s)
  4. SaaS Applications

Marketo

How to configure a Marketo connection

PreviousGoogle AnalyticsNextZoom

Last updated 1 month ago

This document describes the Dataworkz connector configuration required to access Marketo. describes the authentication process to generate an access token for Marketo REST API access.

Prerequisite

You need a Marketo Admin account for connecting to Marketo from Dataworkz. A custom service needs to be defined and configured in Marketo to define what data an application will have access to. Follow the steps below.

  1. Login to Marketo with Admin credentials

  2. Create an API only user role as described

  3. Create an API only user as describe

  4. Create a custom service for use with Marketo REST API as described

    • Make note of the Client ID, Secret & Authorized User

    • these details would be required at the time of creating the connector in Dataworkz by the authorized user

Create Connector for Marketo

  1. Login to Dataworkz Application

  2. Goto Configuration -> SaaS Applications -> Marketo

  3. Click the + icon to add a new configuration

  4. Enter name for the configuration in the above screen

  5. Enter the Client ID & Secret

  6. Enter the REST API endpoint

  7. Select the workspace & collection

  8. Test the connection to validate the details entered above

  9. Click Save

Newly created connector would show up in the list of Marketo configurations

Add Configuration

Click the newly created connector and then click + icon to add configuration for Marketo

  1. Enter name for the dataset

  2. Select the entity of interest

  3. Select all the required fields

    • Choose to download selected fields for easier selection/deselection offline

    • Once desired fields are marked active you can upload the file for automatic selection of the picked fields

  4. Select the format in which dataset should be created (CSV/JSON)

  5. Select either a date range or “all historical records”

  6. Select the criteria that incremental pull should be based on

  7. Enable/disable recurring job

  8. Click Add

This would complete the Dataworkz configuration for Marketo

here
here
here