Product Docs
  • What is Dataworkz?
  • Getting Started
    • What You Will Need (Prerequisites)
    • Create with Default Settings: RAG Quickstart
    • Custom Settings: RAG Quickstart
    • Data Transformation Quickstart
    • Create an Agent: Quickstart
  • Concepts
    • RAG Applications
      • Overview
      • Ingestion
      • Embedding Models
      • Vectorization
      • Retrieve
    • AI Agents
      • Introduction
      • Overview
      • Tools
        • Implementation
      • Type
      • Tools Repository
      • Tool Execution Framework
      • Agents
      • Scenarios
      • Agent Builder
    • Data Studio
      • No-code Transformations
      • Datasets
      • Dataflows
        • Single Dataflows:
        • Composite dataflows:
        • Benefits of Dataflows:
      • Discovery
        • How to: Discovery
      • Lineage
        • Features of Lineage:
        • Viewing a dataset's lineage:
      • Catalog
      • Monitoring
      • Statistics
  • Guides
    • RAG Applications
      • Configure LLM's
        • AWS Bedrock
      • Embedding Models
        • Privately Hosted Embedding Models
        • Amazon Bedrock Hosted Embedding Model
        • OpenAI Embedding Model
      • Connecting Your Data
        • Finding Your Data Storage: Collections
      • Unstructured Data Ingestion
        • Ingesting Unstructured Data
        • Unstructured File Ingestion
        • Html/Sharepoint Ingestion
      • Create Vector Embeddings
        • How to Build the Vector embeddings from Scratch
        • How do Modify Existing Chunking/Embedding Dataflows
      • Response History
      • Creating RAG Experiments with Dataworkz
      • Advanced RAG - Access Control for your data corpus
    • AI Agents
      • Concepts
      • Tools
        • Dataset
        • AI App
        • Rest API
        • LLM Tool
        • Relational DB
        • MongoDB
        • Snowflake
      • Agent Builder
      • Agents
      • Guidelines
    • Data Studio
      • Transformation Functions
        • Column Transformations
          • String Operations
            • Format Operations
            • String Calculation Operations
            • Remove Stop Words Operation
            • Fuzzy Match Operation
            • Masking Operations
            • 1-way Hash Operation
            • Copy Operation
            • Unnest Operation
            • Convert Operation
            • Vlookup Operation
          • Numeric Operations
            • Tiles Operation
            • Numeric Calculation Operations
            • Custom Calculation Operation
            • Numeric Encode Operation
            • Mask Operation
            • 1-way Hash Operation
            • Copy Operation
            • Convert Operation
            • VLookup Operation
          • Boolean Operations
            • Mask Operation
            • 1-way Hash Operation
            • Copy Operation
          • Date Operations
            • Date Format Operations
            • Date Calculation Operations
            • Mask Operation
            • 1-way Hash Operation
            • Copy Operation
            • Encode Operation
            • Convert Operation
          • Datetime/Timestamp Operations
            • Datetime Format Operations
            • Datetime Calculation Operations
            • Mask Operation
            • 1-way Hash Operation
            • Copy Operation
            • Encode Operation
            • Page 1
        • Dataset Transformations
          • Utility Functions
            • Area Under the Curve
            • Page Rank Utility Function
            • Transpose Utility Function
            • Semantic Search Template Utility Function
            • New Header Utility Function
            • Transform to JSON Utility Function
            • Text Utility Function
            • UI Utility Function
          • Window Functions
          • Case Statement
            • Editor Query
            • UI Query
          • Filter
            • Editor Query
            • UI Query
      • Data Prep
        • Joins
          • Configuring a Join
        • Union
          • Configuring a Union
      • Working with CSV files
      • Job Monitoring
    • Utility Features
      • IP safelist
      • Connect to data source(s)
        • Cloud Data Platforms
          • AWS S3
          • BigQuery
          • Google Cloud Storage
          • Azure
          • Snowflake
          • Redshift
          • Databricks
        • Databases
          • MySQL
          • Microsoft SQL Server
          • Oracle
          • MariaDB
          • Postgres
          • DB2
          • MongoDB
          • Couchbase
          • Aerospike
          • Pinecone
        • SaaS Applications
          • Google Ads
          • Google Analytics
          • Marketo
          • Zoom
          • JIRA
          • Salesforce
          • Zendesk
          • Hubspot
          • Outreach
          • Fullstory
          • Pendo
          • Box
          • Google Sheets
          • Slack
          • OneDrive / Sharepoint
          • ServiceNow
          • Stripe
      • Authentication
      • User Management
    • How To
      • Data Lake to Salesforce
      • Embed RAG into your App
  • API
    • Generate API Key in Dataworkz
    • RAG Apps API
    • Agents API
  • Open Source License Types
Powered by GitBook
On this page
  • Prerequisite
  • Configuring Pendo in Dataworkz
  • Add Task Configuration
  1. Guides
  2. Utility Features
  3. Connect to data source(s)
  4. SaaS Applications

Pendo

How to configure a Pendo Connection

PreviousFullstoryNextBox

Last updated 1 month ago

This document describes the Dataworkz connector configuration required to access Pendo.

Prerequisite

Before configuring Dataworkz for Pendo, API key needs to be configured in Pendo. Follow the steps listed below to configure the same in Pendo.

  1. Log in to your Pendo account ().

  2. Click on your Profile icon at the top-right and choose Settings.

  3. In the left sidebar, look for the API section (under "Integrations").

  4. Select the option, generate or copy your API key.

  5. Following sample script need to be added in website to track events in your pendo instance.

<script> (function(apiKey){ (function(p,e,n,d,o){var v,w,x,y,z;o=p[d]=p[d]||{};o._q=o._q||[]; v=['initialize','identify','updateOptions','pageLoad','track'];for(w=0,x=v.length;w<x;++w)(function(m){ o[m]=o[m]||function(){o._q[m===v[0]?'unshift':'push']([m].concat([].slice.call(arguments,0)));};})(v[w]); y=e.createElement(n);y.async=!0;y.src='
https://cdn.pendo.io/agent/static/
'+apiKey+'/pendo.js'; z=e.getElementsByTagName(n)[0];z.parentNode.insertBefore(y,z);})(window,document,'script','pendo'); // This function creates anonymous visitor IDs in Pendo unless you change the visitor id field to use your app's values // This function uses the placeholder 'ACCOUNT-UNIQUE-ID' value for account ID unless you change the account id field to use your app's values // Call this function after users are authenticated in your app and your visitor and account id values are available // Please use Strings, Numbers, or Bools for value types. pendo.initialize({ visitor: { id: ‘VISITOR-asd-123' // Required if user is logged in, default creates anonymous ID // email: // Recommended if using Pendo Feedback, or NPS Email // full_name: // Recommended if using Pendo Feedback // role: // Optional // You can add any additional visitor level key-values here, // as long as it's not one of the above reserved names. }, account: { id: ‘ACCOUNT-asd-123' // Required if using Pendo Feedback, default uses the value 'ACCOUNT-UNIQUE-ID' // name: // Optional // is_paying: // Recommended if using Pendo Feedback // monthly_value:// Recommended if using Pendo Feedback // planLevel: // Optional // planPrice: // Optional // creationDate: // Optional // You can add any additional account level key-values here, // as long as it's not one of the above reserved names. } }); })('3308639a-4b64-4922-5322-5e4f05cf699f'); </script>

Configuring Pendo in Dataworkz

  1. Navigate to the configurations section of the Dataworkz platform (Gear Icon)

  2. Click on SaaS Applications

  3. Select Pendo

  4. Click the + icon to add a new Pendo connection

  5. Add the Pendo instance name

  6. Add the Api key

  7. Select the Dataworkz workspace you would like to connect to

  8. Select the Dataworkz collection that you want dataset to be part of

  9. Test the connection

  10. If the connection is successful, save the configuration

  11. Newly created connection would show up in the list of Pendo configurations.

Add Task Configuration

Click the newly created connector and then click + icon to add a new task configuration for Pendo

  1. Enter name for the dataset

  2. Select the Pendo entity that you need to access

  3. Select the fields of the entity that need to be read

  4. Select the appropriate option for reading all the historical data or for a date range

  5. Select the incremental pull criteria

    • Created At

    • Updated At

  6. Enable/disable recurring job

  7. Click Add to save the configuration

This would complete the Dataworkz configuration for Pendo

https://app.pendo.io/login